1、Java8概述
- Java 8 (又称为jdk 1.8) 是Java 语言开发的一个主要版本。
- Java 8 是oracle公司于2014年3月发布,可以看成是自Java 5 以来最具革命性的版本。Java 8为Java语言、编译器、类库、开发工具与JVM带来了大量新特性。

2、Java8新特性的好处
速度更快
代码更少(增加了新的语法:Lambda 表达式)
强大的Stream API
便于并行
最大化减少空指针异常:Optional
Nashorn引擎,允许在JVM上运行JS应用
03、并行流与串行流
并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。相比较串行的流,并行的流可以很大程度上提高程序的执行效率。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过parallel() 与sequential() 在并行流与顺序流之间进行切换。
4、Lambda表达式
Lambda 是一个匿名函数,我们可以把Lambda 表达式理解为是一段可以传递的代码(将代码像数据一样进行传递)。使用它可以写出更简洁、更灵活的代码。作为一种更紧凑的代码风格,使Java的语言表达能力得到了提升。
4.1、Lambda表达式使用举例
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("The runable now is using!");
}
}).start();
//用lambda
new Thread(() -> System.out.println("It's a lambda function!")).start();
4.2.Comparator 接口
List<Integer> strings = Arrays.asList(1, 2, 3);
Collections.sort(strings, new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o1 - o2;}
});
//Lambda
Collections.sort(strings, (Integer o1, Integer o2) -> o1 - o2);
//分解开
Comparator<Integer> comparator = (Integer o1, Integer o2) -> o1 - o2;
Collections.sort(strings, comparator);
4.3.Listener
接口
JButton button = new JButton();
button.addItemListener(new ItemListener() {
@Override
public void itemStateChanged(ItemEvent e) {
e.getItem();
}
});
//lambda
button.addItemListener(e -> e.getItem());
4.2、Lambda表达式语法的使用
import org.junit.Test;
import java.util.ArrayList;
import java.util.function.Consumer;
/**
* Lambda表达式的使用
*
* 1.举例: (o1,o2) -> Integer.compare(o1,o2);
* 2.格式:
* -> :lambda操作符 或 箭头操作符
* ->左边:lambda形参列表 (其实就是接口中的抽象方法的形参列表)
* ->右边:lambda体 (其实就是重写的抽象方法的方法体)
*
* 3.Lambda表达式的使用:(分为6种情况介绍)
*/
public class LambdaTest1 {
//语法格式一:无参,无返回值
@Test
public void test(){
Runnable r1 = new Runnable() {
@Override
public void run() {
System.out.println("长安欢迎您");
}
};
r1.run();
System.out.println("+++++++++++++++++++++++++|");
Runnable r2 = () -> System.out.println("长安欢迎您");
r2.run();
}
//语法格式二:Lambda 需要一个参数,但是没有返回值。
@Test
public void test2(){
Consumer<String> con = new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
};
con.accept("善与恶的区别是什么?");
System.out.println("+++++++++++++++++++");
Consumer<String> c1 = (String s) -> {
System.out.println(s);
};
c1.accept("先天人性无善恶,后天人性有善恶。");
}
//语法格式三:数据类型可以省略,因为可由编译器推断得出,称为“类型推断”
@Test
public void test3(){
Consumer<String> c1 = (String s) -> {
System.out.println(s);
};
c1.accept("先天人性无善恶,后天人性有善恶。");
System.out.println("---------------------");
Consumer<String> c2 = (s) -> {
System.out.println(s);
};
c2.accept("如果没有邪恶的话我们怎么会知道人世间的那些善良呢?");
}
@Test
public void test4(){
ArrayList<String> list = new ArrayList<>();//类型推断
int[] arr = {1,2,3};//类型推断
}
}
import org.junit.Test;
import java.util.Comparator;
import java.util.function.Consumer;
/**
* Lambda表达式的使用
*
* 1.举例: (o1,o2) -> Integer.compare(o1,o2);
* 2.格式:
* -> :lambda操作符 或 箭头操作符
* ->左边:lambda形参列表 (其实就是接口中的抽象方法的形参列表)
* ->右边:lambda体 (其实就是重写的抽象方法的方法体)
*
* 3.Lambda表达式的使用:(分为6种情况介绍)
*
* 总结:
* ->左边:lambda形参列表的参数类型可以省略(类型推断);如果lambda形参列表只有一个参数,其一对()也可以省略
* ->右边:lambda体应该使用一对{}包裹;如果lambda体只有一条执行语句(可能是return语句),省略这一对{}和return关键字
*/
public class LambdaTest1 {
//语法格式四:Lambda若只需要一个参数时,参数的小括号可以省略
@Test
public void test5(){
Consumer<String> c1 = (s) -> {
System.out.println(s);
};
c1.accept("先天人性无善恶,后天人性有善恶。");
System.out.println("---------------------");
Consumer<String> c2 = s -> {
System.out.println(s);
};
c2.accept("如果没有邪恶的话我们怎么会知道人世间的那些善良呢?");
}
//语法格式五:Lambda需要两个或以上的参数,多条执行语句,并且可以有返回值
@Test
public void test6(){
Comparator<Integer> c1 = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
System.out.println(o1);
System.out.println(o2);
return o1.compareTo(o2);
}
};
System.out.println(c1.compare(15,23));
System.out.println("\\\\\\\\\\\\\\\\\\\\\\\\\\");
Comparator<Integer> com2 = (o1,o2) -> {
System.out.println(o1);
System.out.println(o2);
return o1.compareTo(o2);
};
System.out.println(com2.compare(16,8));
}
//语法格式六:当Lambda体只有一条语句时,return与大括号若有,都可以省略
@Test
public void test7(){
Comparator<Integer> c1 = (o1,o2) -> {
return o1.compareTo(o2);
};
System.out.println(c1.compare(16,8));
System.out.println("\\\\\\\\\\\\\\\\\\\\\\\\\\");
Comparator<Integer> c2 = (o1,o2) -> o1.compareTo(o2);
System.out.println(c2.compare(17,24));
}
@Test
public void test8(){
Consumer<String> c1 = s -> {
System.out.println(s);
};
c1.accept("先天人性无善恶,后天人性有善恶。");
System.out.println("---------------------");
Consumer<String> c2 = s -> System.out.println(s);
c2.accept("如果没有邪恶的话我们怎么会知道人世间的那些善良呢?");
}
}
5、函数式(Functional)接口
5.1、函数式接口的介绍
/*
* 4.Lambda表达式的本质:作为函数式接口的实例
*
* 5. 如果一个接口中,只声明了一个抽象方法,则此接口就称为函数式接口。我们可以在一个接口上使用 @FunctionalInterface 注解,
* 这样做可以检查它是否是一个函数式接口。
*
*/
/**
* 自定义函数式接口
*/
public interface MyInterFace {
void method();
// void method2();
}
- 在java.util.function包下定义了Java 8 的丰富的函数式接口
- Java从诞生日起就是一直倡导“一切皆对象”,在Java里面面向对象(OOP)编程是一切。但是随着python、scala等语言的兴起和新技术的挑战,Java不得不做出调整以便支持更加广泛的技术要求,也即java不但可以支持OOP还可以支持OOF(面向函数编程)
- 简单的说,在Java8中,Lambda表达式就是一个函数式接口的实例。这就是Lambda表达式和函数式接口的关系。也就是说,只要一个对象是函数式接口的实例,那么该对象就可以用Lambda表达式来表示。
- 所以以前用匿名实现类表示的现在都可以用Lambda表达式来写。
5.2、Java内置的函数式接口介绍及使用举例

public class LambdaTest2 {
public void happyTime(double money, Consumer<Double> con) {
con.accept(money);
}
@Test
public void test(){
happyTime(30, new Consumer<Double>() {
@Override
public void accept(Double aDouble) {
System.out.println("熬夜太累了,点个外卖,价格为:" + aDouble);
}
});
System.out.println("+++++++++++++++++++++++++");
//Lambda表达式写法
happyTime(20,money -> System.out.println("熬夜太累了,吃口麻辣烫,价格为:" + money));
}
//根据给定的规则,过滤集合中的字符串。此规则由Predicate的方法决定
public List<String> filterString(List<String> list, Predicate<String> pre){
ArrayList<String> filterList = new ArrayList<>();
for(String s : list){
if(pre.test(s)){
filterList.add(s);
}
}
return filterList;
}
}
6、方法引用与构造器引用
当要传递给Lambda体的操作,已经有实现的方法了,可以使用方法引用!
方法引用可以看做是Lambda表达式深层次的表达。换句话说,方法引用就是Lambda表达式,也就是函数式接口的一个实例,通过方法的名字来指向一个方法,可以认为是Lambda表达式的一个语法糖。
要求:实现接口的抽象方法的参数列表和返回值类型,必须与方法引用的方法的参数列表和返回值类型保持一致!
格式:使用操作符“::” 将类(或对象) 与方法名分隔开来。
如下三种主要使用情况:
对象::实例方法名
类::静态方法名
类::实例方法名
6.1、方法引用的使用情况1
public class Employee {
private int id;
private String name;
private int age;
private double salary;
//get set 方法
}
// 情况一:对象 :: 实例方法
//Consumer中的void accept(T t)
//PrintStream中的void println(T t)
@Test
public void test() {
Consumer<String> c1 = str -> System.out.println(str);
//Consumer<String> c1 = System.out::println;
c1.accept("兖州");
System.out.println("+++++++++++++");
PrintStream ps = System.out;
Consumer<String> c2 = ps::println;
c2.accept("xian");
}
@Test
public void test2() {
Employee emp = new Employee(004,"Nice",19,4200);
Supplier<String> sk1 = () -> emp::getName;
System.out.println(sk1.get());
System.out.println("*******************");
Supplier<String> sk2 = emp::getName;
System.out.println(sk2.get());
}
6.2、方法引用的使用情况2
// 情况二:类 :: 静态方法
//Comparator中的int compare(T t1,T t2)
//Integer中的int compare(T t1,T t2)
@Test
public void test3() {
Comparator<Integer> com1 = (t1, t2) -> Integer.compare(t1,t2);
System.out.println(com1.compare(21,20));
System.out.println("+++++++++++++++");
Comparator<Integer> com2 = Integer::compare;
System.out.println(com2.compare(15,7));
}
6.2、方法引用的使用情况3
// 情况三:类 :: 实例方法 (有难度)
// Comparator中的int comapre(T t1,T t2)
// String中的int t1.compareTo(t2)
@Test
public void test5() {
Comparator<String> com1 = (s1,s2) -> s1.compareTo(s2);
System.out.println(com1.compare("abc","abd"));
System.out.println("++++++++++++++++");
Comparator<String> com2 = String :: compareTo;
System.out.println(com2.compare("abd","abm"));
}
//BiPredicate中的boolean test(T t1, T t2);
//String中的boolean t1.equals(t2)
@Test
public void test6() {
BiPredicate<String,String> pre1 = (s1, s2) -> s1.equals(s2);
System.out.println(pre1.test("MON","MON"));
System.out.println("++++++++++++++++++++");
BiPredicate<String,String> pre2 = String :: equals;
System.out.println(pre2.test("MON","MON"));
}
7、强大的Stream API
7.1、Stream API的概述
- Java8中有两大最为重要的改变。第一个是Lambda 表达式;另外一个则是Stream API。
- Stream API ( java.util.stream)把真正的函数式编程风格引入到Java中。这是目前为止对Java类库最好的补充,因为Stream API可以极大提供Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。
- Stream 是Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用SQL 执行的数据库查询。也可以使用Stream API 来并行执行操作。简言之,Stream API 提供了一种高效且易于使用的处理数据的方式。
- 为什么要使用Stream API
- 实际开发中,项目中多数数据源都来自于Mysql,Oracle等。但现在数据源可以更多了,有MongDB,Radis等,而这些NoSQL的数据就需要Java层面去处理。
- Stream 和Collection 集合的区别:Collection 是一种静态的内存数据结构,而Stream 是有关计算的。前者是主要面向内存,存储在内存中,后者主要是面向CPU,通过CPU 实现计算。
7.2、Stream的实例化
import java.util.ArrayList;
import java.util.List;
/**
* 提供用于测试的数据
*/
public class EmployeeData {
public static List<Employee> getEmployees(){
List<Employee> list = new ArrayList<>();
list.add(new Employee(1001, "马化腾", 34, 6000.38));
list.add(new Employee(1002, "马云", 12, 9876.12));
list.add(new Employee(1003, "刘强东", 33, 3000.82));
list.add(new Employee(1004, "雷军", 26, 7657.37));
list.add(new Employee(1005, "李彦宏", 65, 5555.32));
list.add(new Employee(1006, "比尔盖茨", 42, 9500.43));
list.add(new Employee(1007, "任正非", 26, 4333.32));
list.add(new Employee(1008, "扎克伯格", 35, 2500.32));
return list;
}
}
public class StreamAPITest {
public static void main(String[] args) {
List<Employee> employees = EmployeeData.getEmployees();
// 创建一个顺序流
Stream<Employee> stream = employees.stream();
// 并行流
Stream<Employee> stream1 = employees.parallelStream();
//创建 Stream方式二:通过数组
int[] arr = new int[]{1,2,3,4,5,6};
//调用Arrays类的static <T> Stream<T> stream(T[] array): 返回一个流
IntStream stream = Arrays.stream(arr);
Employee e1 = new Employee(1001,"Hom");
Employee e2 = new Employee(1002,"Nut");
Employee[] arr1 = new Employee[]{e1,e2};
Stream<Employee> stream1 = Arrays.stream(arr1);
//创建 Stream方式三:通过Stream的of()
Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);
//创建 Stream方式四:创建无限流
//迭代
//public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
//遍历前10个偶数
Stream.iterate(0, t -> t + 2).limit(10).forEach(System.out::println);
//生成
//public static<T> Stream<T> generate(Supplier<T> s)
Stream.generate(Math::random).limit(10).forEach(System.out::println);
}
}
7.3、Stream的中间操作:筛选与切片
多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”。

public static void main(String[] args) {
List<Employee> employees = EmployeeData.getEmployees();
Stream<Employee> stream = employees.stream();
//练习:查询员工表中薪资大于7000的员工信息
stream.filter(e -> e.getSalary() > 7000).forEach(System.out::println);
System.out.println("------------------------");
//limit(n)——截断流,使其元素不超过给定数量。
employees.stream().limit(3).forEach(System.out::println);
System.out.println("------------------------");
//skip(n) —— 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
employees.stream().skip(3).forEach(System.out::println);
System.out.println("------------------------");
// distinct()——筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
employees.add(new Employee(1013,"李飞",41,8500));
employees.add(new Employee(1013,"李飞",41,8500));
employees.add(new Employee(1013,"李飞",28,6000));
employees.add(new Employee(1013,"李飞",39,7800));
employees.add(new Employee(1013,"李飞",40,8000));
employees.stream().distinct().forEach(System.out::println);
}
7.4、Stream的中间操作:映射

public static void main(String[] args) {
List<Employee> list = EmployeeData.getEmployees();
list.stream().map(i -> i.getAge() + 10).forEach(System.out::println);
//获取员工姓名长度大于3的员工的姓名。
list.stream().filter(i -> i.getName().length() > 3).map(Employee::getName).forEach(System.out::println);
Stream<Stream<Character>> streamStream = list.stream().map((Function<? super Employee, ? extends Stream<Character>>) StreamAPITest2::fromStringToStream);
streamStream.forEach(s -> {
s.forEach(System.out::println);
});
System.out.println("++++++++++++++++++++++");
// flatMap(Function f)——接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
Stream<Character> characterStream = list.stream().flatMap(StreamAPITest2::fromStringToStream);
characterStream.forEach(System.out::println);
}
7.5、Stream的中间操作:排序

System.out.println("++++++++++++Stream的中间操作:排序++++++++++");
Arrays.asList(1, 2, 9, 5, 3, 7, 2, 4, 3, 4, 5, 6).stream().sorted().forEach(System.out::println);
System.out.println("++++++++++++++++++++++");
list.stream().sorted((e1, e2) -> {
int compare = Integer.compare(e1.getAge(), e2.getAge());
if (compare != 0) {
return compare;
} else {
return e1.getName().compareTo(e2.getName());
}
}).forEach(System.out::println);
7.6、Stream的终止操作:匹配与查找

public class StreamAPITest3 {
//1-匹配与查找
public static void main(String[] args) {
List<Employee> employees = EmployeeData.getEmployees();
// allMatch(Predicate p)——检查是否匹配所有元素。
// 练习:是否所有的员工的年龄都大于18
boolean allMatch = employees.stream().allMatch(e -> e.getAge() > 23);
System.out.println(allMatch);
// anyMatch(Predicate p)——检查是否至少匹配一个元素。
// 练习:是否存在员工的工资大于 10000
boolean anyMatch = employees.stream().anyMatch(e -> e.getSalary() > 9000);
System.out.println(anyMatch);
// noneMatch(Predicate p)——检查是否没有匹配的元素。
// 练习:是否存在员工姓“马”
boolean noneMatch = employees.stream().noneMatch(e -> e.getName().startsWith("马"));
System.out.println(noneMatch);
// findFirst——返回第一个元素
Optional<Employee> employee = employees.stream().findFirst();
System.out.println(employee);
// findAny——返回当前流中的任意元素
Optional<Employee> employee1 = employees.parallelStream().findAny();
System.out.println(employee1);
}
@Test
public void test2(){
List<Employee> employees = EmployeeData.getEmployees();
// count——返回流中元素的总个数
long count = employees.stream().filter(e -> e.getSalary() > 4500).count();
System.out.println(count);
// max(Comparator c)——返回流中最大值
// 练习:返回最高的工资:
Stream<Double> salaryStream = employees.stream().map(e -> e.getSalary());
Optional<Double> maxSalary = salaryStream.max(Double::compare);
System.out.println(maxSalary);
// min(Comparator c)——返回流中最小值
// 练习:返回最低工资的员工
Optional<Employee> employee = employees.stream().min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
System.out.println(employee);
System.out.println();
// forEach(Consumer c)——内部迭代
employees.stream().forEach(System.out::println);
//使用集合的遍历操作
employees.forEach(System.out::println);
}
}
7.7、Stream的终止操作:归约

public class StreamAPITest3 {
//2-归约
public static void main(String[] args) {
// reduce(T identity, BinaryOperator)——可以将流中元素反复结合起来,得到一个值。返回 T
// 练习1:计算1-10的自然数的和
List<Integer> list = Arrays.asList(72,25,32,34,43,56,81,15,29,71);
Integer sum = list.stream().reduce(0, Integer::sum);
System.out.println(sum);
// reduce(BinaryOperator) ——可以将流中元素反复结合起来,得到一个值。返回 Optional<T>
// 练习2:计算公司所有员工工资的总和
List<Employee> employees = EmployeeData.getEmployees();
Stream<Double> salaryStream = employees.stream().map(Employee::getSalary);
// Optional<Double> sumMoney = salaryStream.reduce(Double::sum);
Optional<Double> sumMoney = salaryStream.reduce((d1,d2) -> d1 + d2);
System.out.println(sumMoney.get());
}
}
7.8、Stream的终止操作:收集

public class StreamAPITest3 {
//3-收集
public static void main(String[] args) {
//collect(Collector c)——将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
// 练习1:查找工资大于6000的员工,结果返回为一个List或Set
List<Employee> employees = EmployeeData.getEmployees();
List<Employee> employeeList = employees.stream().filter(e -> e.getSalary() > 6000).collect(Collectors.toList());
employeeList.forEach(System.out::println);
System.out.println("++++++++++++++++++");
Set<Employee> employeeSet = employees.stream().filter(e -> e.getSalary() > 6000).collect(Collectors.toSet());
employeeSet.forEach(System.out::println);
}
}
8、Optional类
8.1、Optional类的介绍
到目前为止,臭名昭著的空指针异常是导致Java应用程序失败的最常见原因。以前,为了解决空指针异常,Google公司著名的Guava项目引入了Optional类,Guava通过使用检查空值的方式来防止代码污染,它鼓励程序员写更干净的代码。受到Google Guava的启发,Optional类已经成为Java 8类库的一部分。
- Optional 类(java.util.Optional) 是一个容器类,它可以保存类型T的值,代表这个值存在。或者仅仅保存null,表示这个值不存在。原来用null 表示一个值不存在,现在Optional 可以更好的表达这个概念。并且可以避免空指针异常。
- Optional类的Javadoc描述如下:这是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。
- Optional提供很多有用的方法,这样我们就不用显式进行空值检测。
- 创建Optional类对象的方法:
Optional.of(T t) : 创建一个Optional 实例,t必须非空;
Optional.empty() : 创建一个空的Optional 实例
Optional.ofNullable(T t):t可以为null - 判断Optional容器中是否包含对象:
boolean isPresent() : 判断是否包含对象
void ifPresent(Consumer consumer) :如果有值,就执行Consumer接口的实现代码,并且该值会作为参数传给它。 - 获取Optional容器的对象:
T get(): 如果调用对象包含值,返回该值,否则抛异常
T orElse(T other) :如果有值则将其返回,否则返回指定的other对象。
T orElseGet(Supplier other) :如果有值则将其返回,否则返回由Supplier接口实现提供的对象。
T orElseThrow(Supplier exceptionSupplier) :如果有值则将其返回,否则抛出由Supplier接口实现提供的异常。
public class Boy {
private Girl girl;
//get set
}
public class Girl {
private String name;
//get set
}
public class OptionalTest {
public static void main(String[] args) {
Girl girl = new Girl();
//girl = null;
//of(T t):保证t是非空的
Optional<Girl> girl1 = Optional.of(girl);
System.out.println(girl1);
Girl girl = new Girl();
// girl = null;
//ofNullable(T t):t可以为null
Optional<Girl> optionalGirl = Optional.ofNullable(girl);
System.out.println(optionalGirl);
//orElse(T t1):如果单前的Optional内部封装的t是非空的,则返回内部的t.
//如果内部的t是空的,则返回orElse()方法中的参数t1.
Girl girl1 = optionalGirl.orElse(new Girl(""));
System.out.println(girl1);
}
}
8.2、Optional类的使用举例
public static void main(String[] args) {
Boy lili = new Boy(new Girl("lili"));
Optional<Boy> lili1 = Optional.ofNullable(lili);
//此时的boy一定非空
Boy wangwu = lili1.orElse(new Boy(new Girl("wangwu")));
Girl girl4 = wangwu.getGirl();
Optional<Girl> girl5 = Optional.ofNullable(girl4);
//此时的Girl一定非空
String name = girl5.orElse(new Girl("zhaoliu")).getName();
System.out.println(name);
}
9、Date-Time API
这是对java.util.Date
强有力的补充,解决了 Date 类的大部分痛点:
- 非线程安全
- 时区处理麻烦
- 各种格式化、和时间计算繁琐
- 设计有缺陷,Date 类同时包含日期和时间;还有一个 java.sql.Date,容易混淆。
我们从常用的时间实例来对比 java.util.Date 和新 Date 有什么区别。用java.util.Date
的代码该改改了
java.time 主要类
java.util.Date
既包含日期又包含时间,而 java.time
把它们进行了分离
LocalDateTime.class //日期+时间 format: yyyy-MM-ddTHH:mm:ss.SSS
LocalDate.class //日期 format: yyyy-MM-dd
LocalTime.class //时间 format: HH:mm:ss
格式化
Java 8 之前:
public void oldFormat(){
Date now = new Date();
//format yyyy-MM-dd
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
String date = sdf.format(now);
System.out.println(String.format("date format : %s", date));
//format HH:mm:ss
SimpleDateFormat sdft = new SimpleDateFormat("HH:mm:ss");
String time = sdft.format(now);
System.out.println(String.format("time format : %s", time));
//format yyyy-MM-dd HH:mm:ss
SimpleDateFormat sdfdt = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String datetime = sdfdt.format(now);
System.out.println(String.format("dateTime format : %s", datetime));
}
Java 8 之后:
public void newFormat(){
//format yyyy-MM-dd
LocalDate date = LocalDate.now();
System.out.println(String.format("date format : %s", date));
//format HH:mm:ss
LocalTime time = LocalTime.now().withNano(0);
System.out.println(String.format("time format : %s", time));
//format yyyy-MM-dd HH:mm:ss
LocalDateTime dateTime = LocalDateTime.now();
DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
String dateTimeStr = dateTime.format(dateTimeFormatter);
System.out.println(String.format("dateTime format : %s", dateTimeStr));
}
字符串转日期格式
Java 8 之前:
//已弃用
Date date = new Date("2021-01-26");
//替换为
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
Date date1 = sdf.parse("2021-01-26");
Java 8 之后:
LocalDate date = LocalDate.of(2021, 1, 26);
LocalDate.parse("2021-01-26");
LocalDateTime dateTime = LocalDateTime.of(2021, 1, 26, 12, 12, 22);
LocalDateTime.parse("2021-01-26 12:12:22");
LocalTime time = LocalTime.of(12, 12, 22);
LocalTime.parse("12:12:22");
日期计算
下面仅以一周后日期为例,其他单位(年、月、日、1/2 日、时等等)大同小异。另外,这些单位都在 java.time.temporal.ChronoUnit 枚举中定义。
Java 8 之前:
public void afterDay(){
//一周后的日期
SimpleDateFormat formatDate = new SimpleDateFormat("yyyy-MM-dd");
Calendar ca = Calendar.getInstance();
ca.add(Calendar.DATE, 7);
Date d = ca.getTime();
String after = formatDate.format(d);
System.out.println("一周后日期:" + after);
//算两个日期间隔多少天,计算间隔多少年,多少月方法类似
String dates1 = "2021-12-23";
String dates2 = "2021-02-26";
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd");
Date date1 = format.parse(dates1);
Date date2 = format.parse(dates2);
int day = (int) ((date1.getTime() - date2.getTime()) / (1000 * 3600 * 24));
System.out.println(dates1 + "和" + dates2 + "相差" + day + "天");
//结果:2021-02-26和2021-12-23相差300天
}
Java 8 之后:
public void pushWeek(){
//一周后的日期
LocalDate localDate = LocalDate.now();
//方法1
LocalDate after = localDate.plus(1, ChronoUnit.WEEKS);
//方法2
LocalDate after2 = localDate.plusWeeks(1);
System.out.println("一周后日期:" + after);
//算两个日期间隔多少天,计算间隔多少年,多少月
LocalDate date1 = LocalDate.parse("2021-02-26");
LocalDate date2 = LocalDate.parse("2021-12-23");
Period period = Period.between(date1, date2);
System.out.println("date1 到 date2 相隔:"
+ period.getYears() + "年"
+ period.getMonths() + "月"
+ period.getDays() + "天");
//打印结果是 “date1 到 date2 相隔:0年9月27天”
//这里period.getDays()得到的天是抛去年月以外的天数,并不是总天数
//如果要获取纯粹的总天数应该用下面的方法
long day = date2.toEpochDay() - date1.toEpochDay();
System.out.println(date1 + "和" + date2 + "相差" + day + "天");
//打印结果:2021-02-26和2021-12-23相差300天
}
获取指定日期
除了日期计算繁琐,获取特定一个日期也很麻烦,比如获取本月最后一天,第一天。
public void getDay() {
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd");
//获取当前月第一天:
Calendar c = Calendar.getInstance();
c.set(Calendar.DAY_OF_MONTH, 1);
String first = format.format(c.getTime());
System.out.println("first day:" + first);
//获取当前月最后一天
Calendar ca = Calendar.getInstance();
ca.set(Calendar.DAY_OF_MONTH, ca.getActualMaximum(Calendar.DAY_OF_MONTH));
String last = format.format(ca.getTime());
System.out.println("last day:" + last);
//当年最后一天
Calendar currCal = Calendar.getInstance();
Calendar calendar = Calendar.getInstance();
calendar.clear();
calendar.set(Calendar.YEAR, currCal.get(Calendar.YEAR));
calendar.roll(Calendar.DAY_OF_YEAR, -1);
Date time = calendar.getTime();
System.out.println("last day:" + format.format(time));
}
Java 8 之后:
public void getDayNew() {
LocalDate today = LocalDate.now();
//获取当前月第一天:
LocalDate firstDayOfThisMonth = today.with(TemporalAdjusters.firstDayOfMonth());
// 取本月最后一天
LocalDate lastDayOfThisMonth = today.with(TemporalAdjusters.lastDayOfMonth());
//取下一天:
LocalDate nextDay = lastDayOfThisMonth.plusDays(1);
//当年最后一天
LocalDate lastday = today.with(TemporalAdjusters.lastDayOfYear());
//2021年最后一个周日,如果用Calendar是不得烦死。
LocalDate lastMondayOf2021 = LocalDate.parse("2021-12-31").with(TemporalAdjusters.lastInMonth(DayOfWeek.SUNDAY));
}
JDBC 和 java8
现在 jdbc 时间类型和 java8 时间类型对应关系是
Date
—>LocalDate
Time
—>LocalTime
Timestamp
—>LocalDateTime
而之前统统对应 Date
,也只有 Date
。
时区
java.util.Date
对象实质上存的是 1970 年 1 月 1 日 0 点( GMT)至 Date 对象所表示时刻所经过的毫秒数。也就是说不管在哪个时区 new Date,它记录的毫秒数都一样,和时区无关。但在使用上应该把它转换成当地时间,这就涉及到了时间的国际化。java.util.Date
本身并不支持国际化,需要借助 TimeZone
。
//北京时间:Wed Jan 27 14:05:29 CST 2021
Date date = new Date();
SimpleDateFormat bjSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
//北京时区
bjSdf.setTimeZone(TimeZone.getTimeZone("Asia/Shanghai"));
System.out.println("毫秒数:" + date.getTime() + ", 北京时间:" + bjSdf.format(date));
//东京时区
SimpleDateFormat tokyoSdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
tokyoSdf.setTimeZone(TimeZone.getTimeZone("Asia/Tokyo")); // 设置东京时区
System.out.println("毫秒数:" + date.getTime() + ", 东京时间:" + tokyoSdf.format(date));
//如果直接print会自动转成当前时区的时间
System.out.println(date);
//Wed Jan 27 14:05:29 CST 2021
在新特性中引入了 java.time.ZonedDateTime
来表示带时区的时间。它可以看成是 LocalDateTime + ZoneId
。
//当前时区时间
ZonedDateTime zonedDateTime = ZonedDateTime.now();
System.out.println("当前时区时间: " + zonedDateTime);
//东京时间
ZoneId zoneId = ZoneId.of(ZoneId.SHORT_IDS.get("JST"));
ZonedDateTime tokyoTime = zonedDateTime.withZoneSameInstant(zoneId);
System.out.println("东京时间: " + tokyoTime);
// ZonedDateTime 转 LocalDateTime
LocalDateTime localDateTime = tokyoTime.toLocalDateTime();
System.out.println("东京时间转当地时间: " + localDateTime);
//LocalDateTime 转 ZonedDateTime
ZonedDateTime localZoned = localDateTime.atZone(ZoneId.systemDefault());
System.out.println("本地时区时间: " + localZoned);
//打印结果
当前时区时间: 2023-01-27T14:43:58.735+08:00[Asia/Shanghai]
东京时间: 2023-01-27T15:43:58.735+09:00[Asia/Tokyo]
东京时间转当地时间: 2023-01-27T15:43:58.735
当地时区时间: 2023-01-27T15:53:35.618+08:00[Asia/Shanghai]
0 条评论