说一下数据库的三大范式?

  • 第一范式:数据表中的每一列(每个字段)都不可以再拆分。例如用户表,用户地址还可以拆分成国家、省份、市,这样才是符合第一范式的。
  • 第二范式:在第一范式的基础上,非主键列完全依赖于主键,而不能是依赖于主键的一部分。例如订单表里,存储了商品信息(商品价格、商品类型),那就需要把商品ID和订单ID作为联合主键,才满足第二范式。
  • 第三范式:在满足第二范式的基础上,表中的非主键只依赖于主键,而不依赖于其他非主键。例如订单表,就不能存储用户信息(姓名、地址)。

MySQL 的基础架构?

MySQL逻辑架构图主要分三层:

  • 客户端:最上层的服务并不是MySQL所独有的,大多数基于网络的客户端/服务器的工具或者服务都有类似的架构。比如连接处理、授权认证、安全等等。
  • Server层:大多数MySQL的核心服务功能都在这一层,包括查询解析、分析、优化、缓存以及所有的内置函数(例如,日期、时间、数学和加密函数),所有跨存储引擎的功能都在这一层实现:存储过程、触发器、视图等。
  • 存储引擎层:第三层包含了存储引擎。存储引擎负责MySQL中数据的存储和提取。Server层通过API与存储引擎进行通信。这些接口屏蔽了不同存储引擎之间的差异,使得这些差异对上层的查询过程透明。

数据库查询流程

  • 条查询语句下来,会经历哪些流程。
  • 客户端底层会带着账号密码,尝试向mysql建立一条TCP长链接。
  • mysql的连接管理模块会对这条连接进行管理。
  • 建立连接后,客户端执行一条查询sql语句。比如:
select * from user where gender = 1 and age = 100;
  • 客户端会将sql语句通过网络连接给mysql。
  • mysql收到sql语句后,会在分析器中先判断下SQL语句有没有语法错误,比如select,如果少打一个l,写成slect,则会报错You have an error in your SQL syntax;。这个报错对于我这样的手残党来说可以说是很熟悉了。
  • 接下来是优化器,在这里会根据一定的规则选择该用什么索引
  • 之后,才是通过执行器去调用存储引擎的接口函数。

一条SQL查询语句的执行顺序?

  1. FROM:对FROM子句中的左表<left_table>和右表<right_table>执行笛卡儿积(Cartesianproduct),产生虚拟表VT1
  2. ON:对虚拟表VT1应用ON筛选,只有那些符合<join_condition>的行才被插入虚拟表VT2中
  3. JOIN:如果指定了OUTER JOIN(如LEFT OUTER JOIN、RIGHT OUTER JOIN),那么保留表中未匹配的行作为外部行添加到虚拟表VT2中,产生虚拟表VT3。如果FROM子句包含两个以上表,则对上一个连接生成的结果表VT3和下一个表重复执行步骤1)~步骤3),直到处理完所有的表为止
  4. WHERE:对虚拟表VT3应用WHERE过滤条件,只有符合<where_condition>的记录才被插入虚拟表VT4中
  5. GROUP BY:根据GROUP BY子句中的列,对VT4中的记录进行分组操作,产生VT5
  6. CUBE|ROLLUP:对表VT5进行CUBE或ROLLUP操作,产生表VT6
  7. HAVING:对虚拟表VT6应用HAVING过滤器,只有符合<having_condition>的记录才被插入虚拟表VT7中。
  8. SELECT:第二次执行SELECT操作,选择指定的列,插入到虚拟表VT8中
  9. DISTINCT:去除重复数据,产生虚拟表VT9
  10. ORDER BY:将虚拟表VT9中的记录按照<order_by_list>进行排序操作,产生虚拟表VT10。11)
  11. LIMIT:取出指定行的记录,产生虚拟表VT11,并返回给查询用户

innodb是如何存数据的?数据页

存储引擎类似于一个个组件,它们才是mysql真正获取一行行数据并返回数据的地方,存储引擎是可以替换更改的,既可以用不支持事务的MyISAM,也可以替换成支持事务的Innodb。这个可以在建表的时候指定。比如

CREATE TABLE `user` (
  ...
) ENGINE=InnoDB;

现在最常用的是InnoDB

我们就重点说这个。

InnoDB中,因为直接操作磁盘会比较慢,所以加了一层内存提提速,叫buffer pool,这里面,放了很多内存页,每一页16KB,有些内存页放的是数据库表里看到的那种一行行的数据,有些则是放的索引信息。

查询SQL到了InnoDB中。会根据前面优化器里计算得到的索引,去查询相应的索引页,如果不在buffer pool里则从磁盘里加载索引页。再通过索引页加速查询,得到数据页的具体位置。如果这些数据页不在buffer pool中,则从磁盘里加载进来。

这样我们就得到了我们想要的一行行数据。最后将得到的数据结果返回给客户端。

众所周知,在mysql5以前,默认的存储引擎是:myslam。但mysql5之后,默认的存储引擎已经变成了:innodb,它是我们建表的首选存储引擎。

那么,问题来了:

  1. innodb底层是如何存储数据的?
  2. 表中有哪些隐藏列?
  3. 用户记录之间是如何关联起来的?

1.磁盘or内存?

1.1 磁盘

数据对系统来说是非常重要的东西,比如:用户的身份证、手机号、银行号、会员过期时间、积分等等。一旦丢失,会对用户造成很大的影响。

那么问题来了,如何才能保证这些重要的数据不丢呢?

答案:把数据存在磁盘上。

当然有人会说,如果磁盘坏了怎么办?那就需要备份,或者做主从了。。。

好了,打住,这不是今天的重点。言归正传。

大家都知道,从磁盘上读写数据,至少需要两次IO请求才能完成。一次是读IO,另一次是写IO。而IO请求是比较耗时的操作,如果频繁的进行IO请求势必会影响数据库的性能。那么,如何才能解决数据库的性能问题呢?

1.2 内存

把数据存在寄存器?

没错,操作系统从寄存器中读取数据是最快的,因为它离CPU最近。

但是寄存器有个非常致命的问题是:它只能存储非常少量的数据,设计它的目的主要是用来暂存指令和地址,并非存储大量用户数据的。

这样看来,只能把数据存在内存中了。

因为内存同样能满足我们,快速读取和写入数据的需求,而且性能是非常可观的,只是比较寄存器稍稍慢了一丢丢而已。

不过有个让人讨厌的地方是,内存相对于磁盘来说,是更加昂贵的资源。通常情况下,500G或者1T的磁盘,是很常见的。但你有听说过有500G的内存吗?别人会以为你疯了。内存大小讨论的数量级一般是16G或32G。

内存可以存储一些用户数据,但无法存储所有的用户数据,因为如果数据量太大了,它可能还是存不下。

此外,即使用户数据能刚好存在内存,以后万一有一天,数据库服务器或者部署节点挂了,或者重启了,数据不就丢了?

怎么做,才能不会因为异常情况,而丢数据。同时,又能保证数据的读写速度呢?

2.数据页

我们可以把一批数据放在一起。

写操作时,先将数据写到内存的某个批次中,然后再将该批次的数据一次性刷到磁盘上。如下图所示:

读操作时,从磁盘上一次读一批数据,然后加载到内存当中,以后就在内存中操作。如下图所示:

将内存中的数据刷到磁盘,或者将磁盘中的数据加载到内存,都是以批次为单位,这个批次就是我们常说的:数据页

当然innodb中存在多种不同类型的页,数据页只是其中一种,我们在这里重点介绍一下数据页。

那么问题来了,什么是数据页?

数据页主要是用来存储表中记录的,它在磁盘中是用双向链表相连的,方便查找,能够非常快速得从一个数据页,定位到另一个数据页。

很多时候,由于我们表中的数据比较多,在磁盘中可能存放在多个数据页当中。

有一天,我们要根据某个条件查询数据时,需要从一个数据页找到另一个数据页,这时候的双向链表就派上大用场了。磁盘中各数据页的整体结构如下图所示:

通常情况下,单个数据页默认的大小是16kb。当然,我们也可以通过参数:innodb_page_size,来重新设置大小。不过,一般情况下,用它的默认值就够了。

好吧,数据页的整体结构已经搞明白了。

那么,单个数据页包含哪些内容呢?

从上图中可以看出,数据页主要包含如下几个部分:

  • 文件头部
  • 页头部
  • 最大和最小记录
  • 用户记录
  • 空闲空间
  • 页目录
  • 文件尾部

3.用户记录

对于新申请的数据页,用户记录是空的。当插入数据时,innodb会将一部分空闲空间分配给用户记录。

用户记录是innodb的重中之重,我们平时保存到数据库中的数据,就存储在它里面。那么,它里面又包含哪些内容呢?你不好奇吗?

其实在innodb支持的数据行格式有四种:

  1. compact行格式
  2. redundant行格式
  3. dynamic行格式
  4. compressed行格式

我们以compact行格式为例:

一条用户记录主要包含三部分内容:

  1. 记录额外信息,它包含了变长字段、null值列表和记录头信息。
  2. 隐藏列,它包含了行id、事务id和回滚点。
  3. 真正的数据列,包含真正的用户数据,可以有很多列。

3.1 额外信息

额外信息并非真正的用户数据,它是为了辅助存数据用的。

3.1.1 变长字段列表

有些数据如果直接存会有问题,比如:如果某个字段是varchar或text类型,它的长度不固定,可以根据存入数据的长度不同,而随之变化。

如果不在一个地方记录数据真正的长度,innodb很可能不知道要分配多少空间。假如都按某个固定长度分配空间,但实际数据又没占多少空间,岂不是会浪费?

所以,需要在变长字段中记录某个变长字段占用的字节数,方便按需分配空间。

3.1.2 null值列表

数据库中有些字段的值允许为null,如果把每个字段的null值,都保存到用户记录中,显然有些浪费存储空间。

有没有办法只简单的标记一下,不存储实际的null值呢?

答案:将为null的字段保存到null值列表。

在列表中用二进制的值1,表示该字段允许为null,用0表示不允许为null。它只占用了1位,就能表示某个字符是否为null,确实可以节省很多存储空间。

3.1.3 记录头信息

记录头信息用于描述一些特殊的属性。

它主要包含:

  • deleted_flag:即删除标记,用于标记该记录是否被删除了。
  • min_rec_flag:即最小目录标记,它是非叶子节点中的最小目录标记。
  • n_owned:即拥有的记录数,记录该组索引记录的条数。
  • heap_no:即堆上的位置,它表示当前记录在堆上的位置。
  • record_type:即记录类型,其中:0表示普通记录,1表示非叶子节点,2表示Infrimum记录, 3表示Supremum记录。
  • next_record:即下一条记录的位置。

3.2 隐藏列

数据库在保存一条用户记录时,会自动创建一些隐藏列。如下图所示:

目前innodb自动创建的隐藏列有三种:

  • db_row_id,即行id,它是一条记录的唯一标识。
  • db_trx_id,即事务id,它是事务的唯一标识。
  • db_roll_ptr,即回滚点,它用于事务回滚。

如果表中有主键,则用主键做行id,无需额外创建。如果表中没有主键,假如有不为null的unique唯一键,则用它做为行id,同样无需额外创建。

如果表中既没有主键,又没有唯一键,则数据库会自动创建行id。

也就是说在innodb中,隐藏列中事务id回滚点是一定会被创建的,但行id要根据实际情况决定。

3.3 真正数据列

真正的数据列中存储了用户的真实数据,它可以包含很多列的数据。这个比较简单,没有什么好多说的。

3.4 用户记录是如何相连的?

通过上面介绍的内容,大家对一条用户记录是如何存储的,应该有了一定的认识。

但问题来了,一条用户记录和另一条用户记录是如何相连的,innodb是怎么知道,某条记录的下一条记录是谁?

答案是:用前面提到过的, 记录额外信息 》 记录头信息 》下一条记录的位置。


多条用户记录之间通过下一条记录的位置,组成了一个单向链表。这样就能从前往后,找到所有的记录了。

4.最大和最小记录

从上面可以得知,在一个数据页当中,如果存在多条用户记录,它们是通过下一条记录的位置相连的。

不过有个问题:如果才能快速找到最大的记录和最小的记录呢?

这就需要在保存用户记录的同时,也保存最大和最小记录了。

最大记录保存到Supremum记录中。

最小记录保存在Infimum记录中。

在保存用户记录时,数据库会自动创建两条额外的记录:Supremum 和 Infimum。它们之间的关系,如下图所示:


从图中可以看出用户数据是从最小记录开始,通过下一条记录的位置,从小到大,一步步查找,最后找到最大记录为止。

5.页目录

从上面可以看出,如果我们要查询某条记录的话,数据库会从最小记录开始,一条条查找所有记录。如果中途找到了,则直接返回该记录。如果一直找到最大记录,还没有找到想要的记录,则返回空。

咋一看,没有问题。

但如果仔细想想。

效率会不会有点低?

这不是要对整页用户数据进行扫描吗?

有没有更高效的方法?

这就需要使用页目录了。

说白了,就是把一页用户记录分为若干组,每一组的最大记录都保存到一个地方,这个地方就是页目录。每一组的最大记录叫做

由此可见,页目录是有多个槽组成的。所下图所示:

假设一页的数据分为4组,这样在页目录中,就对应了4个槽,每个槽中都保存了该组数据的最大值。

这样就能通过二分查找,比较槽中的记录跟需要找到的记录的大小。如果用户需要查找的记录,小于当前槽中的记录,则向上查找上一个槽。如果用户需要查找的记录,大于当前槽中的记录,则向下查找下一个槽。

如此一来,就能通过二分查找,快速的定位需要查找的记录了。

so easy

6.文件头部和尾部

6.1 文件头部

通过前面介绍的行记录中下一条记录的位置页目录,innodb能非常快速的定位某一条记录。但有个前提条件,就是用户记录必须在同一个数据页当中。

如果用户记录非常多,在第一个数据页找不到我们想要的数据,需要到另外一页找该怎么办呢?

这时就需要使用文件头部了。

它里面包含了多个信息,但我只列出了其中4个最关键的信息:

  1. 页号
  2. 上一页页号
  3. 下一页页号
  4. 页类型

顾名思义,innodb是通过页号、上一页页号和下一页页号来串联不同数据页的。如下图所示:

不同的数据页之间,通过上一页页号和下一页页号构成了双向链表。这样就能从前向后,一页页查找所有的数据了。

此外,页类型也是一个非常重要的字段,它包含了多种类型,其中比较出名的有:数据页、索引页(目录项页)、溢出页、undo日志页等。

6.2 文件尾部

我之前提过,数据库的数据是以数据页为单位,加载到内存中,如果数据有更新的话,需要刷新到磁盘上。

但如果某一天比较倒霉,程序在刷新到磁盘的过程中,出现了异常,比如:进程被kill掉了,或者服务器被重启了。

这时候数据可能只刷新了一部分,如何判断上次刷盘的数据是完整的呢?

这就需要用到文件尾部

它里面记录了页面的校验和

在数据刷新到磁盘之前,会先计算一个页面的校验和。后面如果数据有更新的话,会计算一个新值。文件头部中也会记录这个校验和,由于文件头部在前面,会先被刷新到磁盘上。

接下来,刷新用户记录到磁盘的时候,假设刷新了一部分,恰好程序出现异常了。这时,文件尾部的校验和,还是一个旧值。数据库会去校验,文件尾部的校验和,不等于文件头部的新值,说明该数据页的数据是不完整的。

7.页头部

通过上面介绍的内容,数据页之间能够轻松访问了,但剩下还有个比较重要的问题,就是记录的状态信息。

比如一页数据到底保存了多条记录,或者页目录到底使用了多个槽等。这些信息是实时统计,还是事先统计好了,保存到某个地方?

为了性能考虑,上面的这些统计数据,当然是先统计好,保存到一个地方。后面需要用到该数据时,再读取出来会更好。这个保存统计数据的地方,就是页头部

当然页头部不仅仅只保存:槽的数量、记录条数等信息。

它还记录了:

  • 已删除记录所占的字节数
  • 最后插入记录的位置
  • 最大事务id
  • 索引id
  • 索引层级

分类: mysql

0 条评论

发表回复

Avatar placeholder

您的邮箱地址不会被公开。 必填项已用 * 标注