索引介绍
索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。
索引的作用就相当于书的目录。打个比方:我们在查字典的时候,如果没有目录,那我们就只能一页一页地去找我们需要查的那个字,速度很慢;如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。
索引底层数据结构存在很多种类型,常见的索引结构有:B 树、 B+ 树 和 Hash、红黑树。在 MySQL 中,无论是 Innodb 还是 MyISAM,都使用了 B+ 树作为索引结构。
索引的优缺点
优点:
- 使用索引可以大大加快数据的检索速度(大大减少检索的数据量),减少 IO 次数,这也是创建索引的最主要的原因。
- 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
缺点:
- 创建和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态地修改,这会降低 SQL 执行效率。
- 索引需要使用物理文件存储,也会耗费一定空间。
但是,使用索引一定能提高查询性能吗?
大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。
索引类型总结
按照数据结构维度划分:
- BTree 索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样(前面已经介绍了)。
- 哈希索引:类似键值对的形式,一次即可定位。
- RTree 索引:一般不会使用,仅支持 geometry 数据类型,优势在于范围查找,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
- 全文索引:对文本的内容进行分词,进行搜索。目前只有
CHAR
、VARCHAR
、TEXT
列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
按照底层存储方式角度划分:
- 聚簇索引(聚集索引):索引结构和数据一起存放的索引,InnoDB 中的主键索引就属于聚簇索引。
- 非聚簇索引(非聚集索引):索引结构和数据分开存放的索引,二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。
按照应用维度划分:
- 主键索引:加速查询 + 列值唯一(不可以有 NULL)+ 表中只有一个。
- 普通索引:仅加速查询。
- 唯一索引:加速查询 + 列值唯一(可以有 NULL)。
- 覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
- 联合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并。
- 全文索引:对文本的内容进行分词,进行搜索。目前只有
CHAR
、VARCHAR
、TEXT
列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。 - 前缀索引:对文本的前几个字符创建索引,相比普通索引建立的数据更小,因为只取前几个字符。
MySQL 8.x 中实现的索引新特性:
- 隐藏索引:也称为不可见索引,不会被优化器使用,但是仍然需要维护,通常会软删除和灰度发布的场景中使用。主键不能设置为隐藏(包括显式设置或隐式设置)。
- 降序索引:之前的版本就支持通过 desc 来指定索引为降序,但实际上创建的仍然是常规的升序索引。直到 MySQL 8.x 版本才开始真正支持降序索引。另外,在 MySQL 8.x 版本中,不再对 GROUP BY 语句进行隐式排序。
- 函数索引:从 MySQL 8.0.13 版本开始支持在索引中使用函数或者表达式的值,也就是在索引中可以包含函数或者表达式。
主键索引(Primary Key)
数据表的主键列使用的就是主键索引。
一张数据表有只能有一个主键,并且主键不能为 null,不能重复。
在 MySQL 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引且不允许存在 null 值的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。

二级索引
二级索引(Secondary Index)的叶子节点存储的数据是主键的值,也就是说,通过二级索引可以定位主键的位置,二级索引又称为辅助索引/非主键索引。
唯一索引、普通索引、前缀索引等索引都属于二级索引。
- 唯一索引(Unique Key):唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
普通索引(Index):普通索引的唯一作用就是为了快速查询数据。一张表允许创建多个普通索引,并允许数据重复和 NULL。
前缀索引(Prefix):前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小,因为只取前几个字符。
全文索引(Full Text):全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MyISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。

聚簇索引与非聚簇索引
聚簇索引介绍
聚簇索引(Clustered Index)即索引结构和数据一起存放的索引,并不是一种单独的索引类型。InnoDB 中的主键索引就属于聚簇索引。
在 MySQL 中,InnoDB 引擎的表的 .ibd
文件就包含了该表的索引和数据,对于 InnoDB 引擎表来说,该表的索引(B+ 树)的每个非叶子节点存储索引,叶子节点存储索引和索引对应的数据。
聚簇索引的优缺点
优点:
- 查询速度非常快:聚簇索引的查询速度非常的快,因为整个 B+ 树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。相比于非聚簇索引, 聚簇索引少了一次读取数据的 IO 操作。
- 对排序查找和范围查找优化:聚簇索引对于主键的排序查找和范围查找速度非常快。
缺点:
- 依赖于有序的数据:因为 B+ 树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
- 更新代价大:如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚簇索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。
非聚簇索引(非聚集索引)
非聚簇索引介绍
非聚簇索引(Non-Clustered Index)即索引结构和数据分开存放的索引,并不是一种单独的索引类型。二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。
非聚簇索引的叶子节点并不一定存放数据的指针,因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据。
非聚簇索引的优缺点
优点:
更新代价比聚簇索引要小。非聚簇索引的更新代价就没有聚簇索引那么大了,非聚簇索引的叶子节点是不存放数据的。
缺点:
- 依赖于有序的数据:跟聚簇索引一样,非聚簇索引也依赖于有序的数据。
- 可能会二次查询(回表):这应该是非聚簇索引最大的缺点了。当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。
这是 MySQL 的表的文件截图:

聚簇索引和非聚簇索引:

非聚簇索引一定回表查询吗(覆盖索引)?
非聚簇索引不一定回表查询。
试想一种情况,用户准备使用 SQL 查询用户名,而用户名字段正好建立了索引。
SELECT name FROM table WHERE name='guang19';
那么这个索引的 key 本身就是 name,查到对应的 name 直接返回就行了,无需回表查询。
即使是 MyISAM 也是这样,虽然 MyISAM 的主键索引确实需要回表,因为它的主键索引的叶子节点存放的是指针。但是!如果 SQL 查的就是主键呢?
SELECT id FROM table WHERE id=1;
主键索引本身的 key 就是主键,查到返回就行了。这种情况就称之为覆盖索引了。
覆盖索引和联合索引
覆盖索引
如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为 覆盖索引(Covering Index)。
在 InnoDB 存储引擎中,非主键索引的叶子节点包含的是主键的值。这意味着,当使用非主键索引进行查询时,数据库会先找到对应的主键值,然后再通过主键索引来定位和检索完整的行数据。这个过程被称为“回表”。
覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。
如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引,
那么直接根据这个索引就可以查到数据,也无需回表。

我们这里简单演示一下覆盖索引的效果。
1、创建一个名为 cus_order
的表,来实际测试一下这种排序方式。为了测试方便,cus_order
这张表只有 id
、score
、name
这 3 个字段。
CREATE TABLE `cus_order` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`score` int(11) NOT NULL,
`name` varchar(11) NOT NULL DEFAULT '',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=100000 DEFAULT CHARSET=utf8mb4;
2、定义一个简单的存储过程(PROCEDURE)来插入 100w 测试数据。
DELIMITER ;;
CREATE DEFINER=`root`@`%` PROCEDURE `BatchinsertDataToCusOder`(IN start_num INT,IN max_num INT)
BEGIN
DECLARE i INT default start_num;
WHILE i < max_num DO
insert into `cus_order`(`id`, `score`, `name`)
values (i,RAND() * 1000000,CONCAT('user', i));
SET i = i + 1;
END WHILE;
END;;
DELIMITER ;
存储过程定义完成之后,我们执行存储过程即可!
CALL BatchinsertDataToCusOder(1, 1000000); # 插入100w+的随机数据
等待一会,100w 的测试数据就插入完成了!
3、创建覆盖索引并使用 EXPLAIN
命令分析。
为了能够对这 100w 数据按照 score
进行排序,我们需要执行下面的 SQL 语句。
#降序排序
SELECT `score`,`name` FROM `cus_order` ORDER BY `score` DESC;
使用 EXPLAIN
命令分析这条 SQL 语句,通过 Extra
这一列的 Using filesort
,我们发现是没有用到覆盖索引的。

不过这也是理所应当,毕竟我们现在还没有创建索引呢!
我们这里以 score
和 name
两个字段建立联合索引:
ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);
创建完成之后,再用 EXPLAIN
命令分析再次分析这条 SQL 语句。

通过 Extra
这一列的 Using index
,说明这条 SQL 语句成功使用了覆盖索引。
联合索引
使用表中的多个字段创建索引,就是 联合索引,也叫 组合索引 或 复合索引。
以 score
和 name
两个字段建立联合索引:
ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);
最左前缀匹配原则
最左前缀匹配原则指的是在使用联合索引时,MySQL 会根据索引中的字段顺序,从左到右依次匹配查询条件中的字段。如果查询条件与索引中的最左侧字段相匹配,那么 MySQL 就会使用索引来过滤数据,这样可以提高查询效率。
最左匹配原则会一直向右匹配,直到遇到范围查询(如 >、<)为止。对于 >=、<=、BETWEEN 以及前缀匹配 LIKE 的范围查询,不会停止匹配(相关阅读:联合索引的最左匹配原则全网都在说的一个错误结论)。
联合索引的最左匹配原则,在遇到范围查询(如 >、<)的时候,就会停止匹配,也就是范围查询的字段可以用到联合索引,但是在范围查询字段后面的字段无法用到联合索引。但是,对于 >=、<=、BETWEEN、like 前缀匹配这四种范围查询,并不会停止匹配。
假设有一个联合索引 (column1, column2, column3)
,其从左到右的所有前缀为 (column1)
、(column1, column2)
、(column1, column2, column3)
(创建 1 个联合索引相当于创建了 3 个索引),包含这些列的所有查询都会走索引而不会全表扫描。
我们在使用联合索引时,可以将区分度高的字段放在最左边,这也可以过滤更多数据。
我们这里简单演示一下最左前缀匹配的效果。
1、创建一个名为 student
的表,这张表只有 id
、name
、class
这 3 个字段。
CREATE TABLE `student` (
`id` int NOT NULL,
`name` varchar(100) DEFAULT NULL,
`class` varchar(100) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `name_class_idx` (`name`,`class`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
2、下面我们分别测试三条不同的 SQL 语句。
# 可以命中索引
SELECT * FROM student WHERE name = 'Anne Henry';
EXPLAIN SELECT * FROM student WHERE name = 'Anne Henry' AND class = 'lIrm08RYVk';
# 无法命中索引
SELECT * FROM student WHERE class = 'lIrm08RYVk';
再来看一个常见的面试题:如果有索引 联合索引(a,b,c)
,查询 a=1 AND c=1
会走索引么?c=1
呢?b=1 AND c=1
呢?
先不要往下看答案,给自己 3 分钟时间想一想。
- 查询
a=1 AND c=1
:根据最左前缀匹配原则,查询可以使用索引的前缀部分。因此,该查询仅在a=1
上使用索引,然后对结果进行c=1
的过滤。
查询c=1
:由于查询中不包含最左列a
,根据最左前缀匹配原则,整个索引都无法被使用。
查询b=1 AND c=1
:和第二种一样的情况,整个索引都不会使用。
MySQL 8.0.13 版本引入了索引跳跃扫描(Index Skip Scan,简称 ISS),它可以在某些索引查询场景下提高查询效率。在没有 ISS 之前,不满足最左前缀匹配原则的联合索引查询中会执行全表扫描。而 ISS 允许 MySQL 在某些情况下避免全表扫描,即使查询条件不符合最左前缀。不过,这个功能比较鸡肋。
索引下推
索引下推(Index Condition Pushdown,简称 ICP) 是 MySQL 5.6 版本中提供的一项索引优化功能,它允许存储引擎在索引遍历过程中,执行部分 WHERE
字句的判断条件,直接过滤掉不满足条件的记录,从而减少回表次数,提高查询效率。
假设我们有一个名为 user
的表,其中包含 id
、username
、zipcode
和 birthdate
4 个字段,创建了联合索引 (zipcode, birthdate)
。
CREATE TABLE `user` (
`id` int NOT NULL AUTO_INCREMENT,
`username` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
`zipcode` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
`birthdate` date NOT NULL,
PRIMARY KEY (`id`),
KEY `idx_username_birthdate` (`zipcode`,`birthdate`) ) ENGINE=InnoDB AUTO_INCREMENT=1001 DEFAULT CHARSET=utf8mb4;
# 查询 zipcode 为 431200 且生日在 3 月的用户
# birthdate 字段使用函数索引失效
SELECT * FROM user WHERE zipcode = '431200' AND MONTH(birthdate) = 3;
- 没有索引下推之前,即使
zipcode
字段利用索引可以帮助我们快速定位到zipcode = '431200'
的用户,但我们仍然需要对每一个找到的用户进行回表操作,获取完整的用户数据,再去判断MONTH(birthdate) = 3
。 - 有了索引下推之后,存储引擎会在使用
zipcode
字段索引查找zipcode = '431200'
的用户时,同时判断MONTH(birthdate) = 3
。这样,只有同时满足条件的记录才会被返回,减少了回表次数。


再来讲讲索引下推的具体原理,先看下面这张 MySQL 简要架构图。

MySQL 可以简单分为 Server 层和存储引擎层这两层。Server 层处理查询解析、分析、优化、缓存以及与客户端的交互等操作,而存储引擎层负责数据的存储和读取,MySQL 支持 InnoDB、MyISAM、Memory 等多种存储引擎。
索引下推的 下推 其实就是指将部分上层(Server 层)负责的事情,交给了下层(存储引擎层)去处理。
我们这里结合索引下推原理再对上面提到的例子进行解释。
没有索引下推之前:
- 存储引擎层先根据
zipcode
索引字段找到所有zipcode = '431200'
的用户的主键 ID,然后二次回表查询,获取完整的用户数据; - 存储引擎层把所有
zipcode = '431200'
的用户数据全部交给 Server 层,Server 层根据MONTH(birthdate) = 3
这一条件再进一步做筛选。
有了索引下推之后:
- 存储引擎层先根据
zipcode
索引字段找到所有zipcode = '431200'
的用户,然后直接判断MONTH(birthdate) = 3
,筛选出符合条件的主键 ID; - 二次回表查询,根据符合条件的主键 ID 去获取完整的用户数据;
- 存储引擎层把符合条件的用户数据全部交给 Server 层。
可以看出,除了可以减少回表次数之外,索引下推还可以减少存储引擎层和 Server 层的数据传输量
最后,总结一下索引下推应用范围:
- 适用于 InnoDB 引擎和 MyISAM 引擎的查询。
- 适用于执行计划是 range、ref、eq_ref、ref_or_null 的范围查询。
- 对于 InnoDB 表,仅用于非聚簇索引。索引下推的目标是减少全行读取次数,从而减少 I/O 操作。对于 InnoDB 聚集索引,完整的记录已经读入 InnoDB 缓冲区。在这种情况下使用索引下推不会减少 I/O。
- 子查询不能使用索引下推,因为子查询通常会创建临时表来处理结果,而这些临时表是没有索引的。
- 存储过程不能使用索引下推,因为存储引擎无法调用存储函数。
MySQL执行计划分析
什么是执行计划?
执行计划 是指一条 SQL 语句在经过 MySQL 查询优化器 的优化后,具体的执行方式。
执行计划通常用于 SQL 性能分析、优化等场景。通过 EXPLAIN
的结果,可以了解到如数据表的查询顺序、数据查询操作的操作类型、哪些索引可以被命中、哪些索引实际会命中、每个数据表有多少行记录被查询等信息。
如何获取执行计划?
MySQL 为我们提供了 EXPLAIN
命令,来获取执行计划的相关信息。
需要注意的是,EXPLAIN
语句并不会真的去执行相关的语句,而是通过查询优化器对语句进行分析,找出最优的查询方案,并显示对应的信息。
EXPLAIN + SELECT 查询语句;
我们简单来看下一条查询语句的执行计划:
mysql> explain SELECT * FROM dept_emp WHERE emp_no IN (SELECT emp_no FROM dept_emp GROUP BY emp_no HAVING COUNT(emp_no)>1);
+----+-------------+----------+------------+-------+-----------------+---------+---------+------+--------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+-----------------+---------+---------+------+--------+----------+-------------+
| 1 | PRIMARY | dept_emp | NULL | ALL | NULL | NULL | NULL | NULL | 331143 | 100.00 | Using where |
| 2 | SUBQUERY | dept_emp | NULL | index | PRIMARY,dept_no | PRIMARY | 16 | NULL | 331143 | 100.00 | Using index |
+----+-------------+----------+------------+-------+-----------------+---------+---------+------+--------+----------+-------------+
可以看到,执行计划结果中共有 12 列,各列代表的含义总结如下表:

id
SELECT
标识符,用于标识每个 SELECT
语句的执行顺序。
id 如果相同,从上往下依次执行。id 不同,id 值越大,执行优先级越高,如果行引用其他行的并集结果,则该值可以为 NULL。
select_type
查询的类型,主要用于区分普通查询、联合查询、子查询等复杂的查询,常见的值有:
- SIMPLE:简单查询,不包含 UNION 或者子查询。
- PRIMARY:查询中如果包含子查询或其他部分,外层的 SELECT 将被标记为 PRIMARY。
- SUBQUERY:子查询中的第一个 SELECT。
- UNION:在 UNION 语句中,UNION 之后出现的 SELECT。
- DERIVED:在 FROM 中出现的子查询将被标记为 DERIVED。
- UNION RESULT:UNION 查询的结果。
table
查询用到的表名,每行都有对应的表名,表名除了正常的表之外,也可能是以下列出的值:
<unionM,N>
: 本行引用了 id 为 M 和 N 的行的 UNION 结果;<derivedN>
: 本行引用了 id 为 N 的表所产生的的派生表结果。派生表有可能产生自 FROM 语句中的子查询。<subqueryN>
: 本行引用了 id 为 N 的表所产生的的物化子查询结果。
type(重要)
查询执行的类型,描述了查询是如何执行的。所有值的顺序从最优到最差排序为:
system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL
常见的几种类型具体含义如下:
- system:如果表使用的引擎对于表行数统计是精确的(如:MyISAM),且表中只有一行记录的情况下,访问方法是 system ,是 const 的一种特例。
- const:表中最多只有一行匹配的记录,一次查询就可以找到,常用于使用主键或唯一索引的所有字段作为查询条件。
- eq_ref:当连表查询时,前一张表的行在当前这张表中只有一行与之对应。是除了 system 与 const 之外最好的 join 方式,常用于使用主键或唯一索引的所有字段作为连表条件。
- ref:使用普通索引作为查询条件,查询结果可能找到多个符合条件的行。
- index_merge:当查询条件使用了多个索引时,表示开启了 Index Merge 优化,此时执行计划中的 key 列列出了使用到的索引。
- range:对索引列进行范围查询,执行计划中的 key 列表示哪个索引被使用了。
- index:查询遍历了整棵索引树,与 ALL 类似,只不过扫描的是索引,而索引一般在内存中,速度更快。
- ALL:全表扫描。
possible_keys
possible_keys 列表示 MySQL 执行查询时可能用到的索引。如果这一列为 NULL ,则表示没有可能用到的索引;这种情况下,需要检查 WHERE 语句中所使用的的列,看是否可以通过给这些列中某个或多个添加索引的方法来提高查询性能。
key(重要)
key 列表示 MySQL 实际使用到的索引。如果为 NULL,则表示未用到索引。
key_len
key_len 列表示 MySQL 实际使用的索引的最大长度;当使用到联合索引时,有可能是多个列的长度和。在满足需求的前提下越短越好。如果 key 列显示 NULL ,则 key_len 列也显示 NULL 。
rows
rows 列表示根据表统计信息及选用情况,大致估算出找到所需的记录或所需读取的行数,数值越小越好。
Extra(重要)
这列包含了 MySQL 解析查询的额外信息,通过这些信息,可以更准确的理解 MySQL 到底是如何执行查询的。常见的值如下:
- Using filesort:在排序时使用了外部的索引排序,没有用到表内索引进行排序。
- Using temporary:MySQL 需要创建临时表来存储查询的结果,常见于 ORDER BY 和 GROUP BY。
- Using index:表明查询使用了覆盖索引,不用回表,查询效率非常高。
- Using index condition:表示查询优化器选择使用了索引条件下推这个特性。
- Using where:表明查询使用了 WHERE 子句进行条件过滤。一般在没有使用到索引的时候会出现。
- Using join buffer (Block Nested Loop):连表查询的方式,表示当被驱动表的没有使用索引的时候,MySQL 会先将驱动表读出来放到 join buffer 中,再遍历被驱动表与驱动表进行查询。
这里提醒下,当 Extra 列包含 Using filesort 或 Using temporary 时,MySQL 的性能可能会存在问题,需要尽可能避免
0 条评论