JDK 提供的这些容器大部分在 java.util.concurrent
包中。
ConcurrentHashMap
: 线程安全的HashMap
CopyOnWriteArrayList
: 线程安全的List
,在读多写少的场合性能非常好,远远好于Vector
。ConcurrentLinkedQueue
: 高效的并发队列,使用链表实现。可以看做一个线程安全的LinkedList
,这是一个非阻塞队列。BlockingQueue
: 这是一个接口,JDK 内部通过链表、数组等方式实现了这个接口。表示阻塞队列,非常适合用于作为数据共享的通道。ConcurrentSkipListMap
: 跳表的实现。这是一个 Map,使用跳表的数据结构进行快速查找。
ConcurrentHashMap
我们知道,HashMap
是线程不安全的,如果在并发场景下使用,一种常见的解决方式是通过 Collections.synchronizedMap()
方法对 HashMap
进行包装,使其变为线程安全。不过,这种方式是通过一个全局锁来同步不同线程间的并发访问,会导致严重的性能瓶颈,尤其是在高并发场景下。
为了解决这一问题,ConcurrentHashMap
应运而生,作为 HashMap
的线程安全版本,它提供了更高效的并发处理能力。
在 JDK1.7 的时候,ConcurrentHashMap
对整个桶数组进行了分割分段(Segment
,分段锁),每一把锁只锁容器其中一部分数据(下面有示意图),多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。

到了 JDK1.8 的时候,ConcurrentHashMap
取消了 Segment
分段锁,采用 Node + CAS + synchronized
来保证并发安全。数据结构跟 HashMap
1.8 的结构类似,数组+链表/红黑二叉树。Java 8 在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为 O(N))转换为红黑树(寻址时间复杂度为 O(log(N)))。
Java 8 中,锁粒度更细,synchronized
只锁定当前链表或红黑二叉树的首节点,这样只要 hash 不冲突,就不会产生并发,就不会影响其他 Node 的读写,效率大幅提升。
CopyOnWriteArrayList
在 JDK1.5 之前,如果想要使用并发安全的 List
只能选择 Vector
。而 Vector
是一种老旧的集合,已经被淘汰。Vector
对于增删改查等方法基本都加了 synchronized
,这种方式虽然能够保证同步,但这相当于对整个 Vector
加上了一把大锁,使得每个方法执行的时候都要去获得锁,导致性能非常低下。
JDK1.5 引入了 Java.util.concurrent
(JUC)包,其中提供了很多线程安全且并发性能良好的容器,其中唯一的线程安全 List
实现就是 CopyOnWriteArrayList
。
对于大部分业务场景来说,读取操作往往是远大于写入操作的。由于读取操作不会对原有数据进行修改,因此,对于每次读取都进行加锁其实是一种资源浪费。相比之下,我们应该允许多个线程同时访问 List
的内部数据,毕竟对于读取操作来说是安全的。
这种思路与 ReentrantReadWriteLock
读写锁的设计思想非常类似,即读读不互斥、读写互斥、写写互斥(只有读读不互斥)。CopyOnWriteArrayList
更进一步地实现了这一思想。为了将读操作性能发挥到极致,CopyOnWriteArrayList
中的读取操作是完全无需加锁的。更加厉害的是,写入操作也不会阻塞读取操作,只有写写才会互斥。这样一来,读操作的性能就可以大幅度提升。
CopyOnWriteArrayList
线程安全的核心在于其采用了 写时复制(Copy-On-Write) 的策略,从 CopyOnWriteArrayList
的名字就能看出了。
当需要修改( add
,set
、remove
等操作) CopyOnWriteArrayList
的内容时,不会直接修改原数组,而是会先创建底层数组的副本,对副本数组进行修改,修改完之后再将修改后的数组赋值回去,这样就可以保证写操作不会影响读操作了。
ConcurrentLinkedQueue
Java 提供的线程安全的 Queue
可以分为阻塞队列和非阻塞队列,其中阻塞队列的典型例子是 BlockingQueue
,非阻塞队列的典型例子是 ConcurrentLinkedQueue
,在实际应用中要根据实际需要选用阻塞队列或者非阻塞队列。 阻塞队列可以通过加锁来实现,非阻塞队列可以通过 CAS 操作实现。
从名字可以看出,ConcurrentLinkedQueue
这个队列使用链表作为其数据结构.ConcurrentLinkedQueue
应该算是在高并发环境中性能最好的队列了。它之所有能有很好的性能,是因为其内部复杂的实现。
ConcurrentLinkedQueue
内部代码我们就不分析了,大家知道 ConcurrentLinkedQueue
主要使用 CAS 非阻塞算法来实现线程安全就好了。
ConcurrentLinkedQueue
适合在对性能要求相对较高,同时对队列的读写存在多个线程同时进行的场景,即如果对队列加锁的成本较高则适合使用无锁的 ConcurrentLinkedQueue
来替代。
BlockingQueue
BlockingQueue 简介
上面我们己经提到了 ConcurrentLinkedQueue
作为高性能的非阻塞队列。下面我们要讲到的是阻塞队列——BlockingQueue
。阻塞队列(BlockingQueue
)被广泛使用在“生产者-消费者”问题中,其原因是 BlockingQueue
提供了可阻塞的插入和移除的方法。当队列容器已满,生产者线程会被阻塞,直到队列未满;当队列容器为空时,消费者线程会被阻塞,直至队列非空时为止。
BlockingQueue
是一个接口,继承自 Queue
,所以其实现类也可以作为 Queue
的实现来使用,而 Queue
又继承自 Collection
接口
下面主要介绍一下 3 个常见的 BlockingQueue
的实现类:ArrayBlockingQueue
、LinkedBlockingQueue
、PriorityBlockingQueue
。
ArrayBlockingQueue
ArrayBlockingQueue
是 BlockingQueue
接口的有界队列实现类,底层采用数组来实现。
public class ArrayBlockingQueue<E>
extends AbstractQueue<E>
implements BlockingQueue<E>, Serializable{}
ArrayBlockingQueue
一旦创建,容量不能改变。其并发控制采用可重入锁 ReentrantLock
,不管是插入操作还是读取操作,都需要获取到锁才能进行操作。当队列容量满时,尝试将元素放入队列将导致操作阻塞;尝试从一个空队列中取一个元素也会同样阻塞。
ArrayBlockingQueue
默认情况下不能保证线程访问队列的公平性,所谓公平性是指严格按照线程等待的绝对时间顺序,即最先等待的线程能够最先访问到 ArrayBlockingQueue
。而非公平性则是指访问 ArrayBlockingQueue
的顺序不是遵守严格的时间顺序,有可能存在,当 ArrayBlockingQueue
可以被访问时,长时间阻塞的线程依然无法访问到 ArrayBlockingQueue
。如果保证公平性,通常会降低吞吐量。如果需要获得公平性的 ArrayBlockingQueue
,可采用如下代码:
private static ArrayBlockingQueue<Integer> blockingQueue = new ArrayBlockingQueue<Integer>(10,true);
LinkedBlockingQueue
LinkedBlockingQueue
底层基于单向链表实现的阻塞队列,可以当做无界队列也可以当做有界队列来使用,同样满足 FIFO 的特性,与 ArrayBlockingQueue
相比起来具有更高的吞吐量,为了防止 LinkedBlockingQueue
容量迅速增,损耗大量内存。通常在创建 LinkedBlockingQueue
对象时,会指定其大小,如果未指定,容量等于 Integer.MAX_VALUE
。
相关构造方法:
/**
*某种意义上的无界队列
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
/**
*有界队列
* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity} is not greater
* than zero
*/
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);
}
PriorityBlockingQueue
PriorityBlockingQueue
是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序进行排序,也可以通过自定义类实现 compareTo()
方法来指定元素排序规则,或者初始化时通过构造器参数 Comparator
来指定排序规则。
PriorityBlockingQueue
并发控制采用的是可重入锁 ReentrantLock
,队列为无界队列(ArrayBlockingQueue
是有界队列,LinkedBlockingQueue
也可以通过在构造函数中传入 capacity
指定队列最大的容量,但是 PriorityBlockingQueue
只能指定初始的队列大小,后面插入元素的时候,如果空间不够的话会自动扩容)。
简单地说,它就是 PriorityQueue
的线程安全版本。不可以插入 null 值,同时,插入队列的对象必须是可比较大小的(comparable),否则报 ClassCastException
异常。它的插入操作 put 方法不会 block,因为它是无界队列(take 方法在队列为空的时候会阻塞)。
ConcurrentSkipListMap
为了引出 ConcurrentSkipListMap
,先带着大家简单理解一下跳表。
对于一个单链表,即使链表是有序的,如果我们想要在其中查找某个数据,也只能从头到尾遍历链表,这样效率自然就会很低,跳表就不一样了。跳表是一种可以用来快速查找的数据结构,有点类似于平衡树。它们都可以对元素进行快速的查找。但一个重要的区别是:对平衡树的插入和删除往往很可能导致平衡树进行一次全局的调整。而对跳表的插入和删除只需要对整个数据结构的局部进行操作即可。这样带来的好处是:在高并发的情况下,你会需要一个全局锁来保证整个平衡树的线程安全。而对于跳表,你只需要部分锁即可。这样,在高并发环境下,你就可以拥有更好的性能。而就查询的性能而言,跳表的时间复杂度也是 O(logn) 所以在并发数据结构中,JDK 使用跳表来实现一个 Map。
跳表的本质是同时维护了多个链表,并且链表是分层的,

最低层的链表维护了跳表内所有的元素,每上面一层链表都是下面一层的子集。
跳表内的所有链表的元素都是排序的。查找时,可以从顶级链表开始找。一旦发现被查找的元素大于当前链表中的取值,就会转入下一层链表继续找。这也就是说在查找过程中,搜索是跳跃式的。如上图所示,在跳表中查找元素 18。

查找 18 的时候原来需要遍历 18 次,现在只需要 7 次即可。针对链表长度比较大的时候,构建索引查找效率的提升就会非常明显。
从上面很容易看出,跳表是一种利用空间换时间的算法。
使用跳表实现 Map
和使用哈希算法实现 Map
的另外一个不同之处是:哈希并不会保存元素的顺序,而跳表内所有的元素都是排序的。因此在对跳表进行遍历时,你会得到一个有序的结果。所以,如果你的应用需要有序性,那么跳表就是你不二的选择。JDK 中实现这一数据结构的类是 ConcurrentSkipListMap
。
0 条评论